1. Christ, Patrick Ferdinand, et al. "Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, 2016.
Goal : Segmentation of liver and its lesions in CT abdomen images
Dataset : 3DIRCADb dataset (https://www.ircad.fr/research/3d-ircadb-01/)
- 3D CT scans for 20 people with hepatic tumors, where 15 volumes have hepatic tumors in the liver.
Preprocessing : in slice-wise
1) Hounsfield unit values windowed to range [-100, 400] to exclude irrelevant organs and organs.
2) Increase contrast through histogram equalization
3) Augment data by applying translation, rotation and addition of gaussian noise
-> Increased training dataset of 22,693 image slices.
Model : Cascaded FCNs(CFCNs) based on UNet architecture and dense 3D conditional random fields(CFRs)
1) Train the first FCN to segment the liver as ROI input to second FCN.
2) Train the second FCN to segment lesions from the predicted liver ROIs of 1).
3) Refine the result using a dense 3D CRF
Performance : Dice scores over 94%, computation times below 100s per volume.
- Green : correctly predicted liver segmentation
- Yellow : liver FN and FP (wrong predictions)
- Blue : correctly predicted lesion segmentation
- Red : lesion FN and FP (wrong predictions)
- B(single UNet (2015))์์์ FP lesion ๋ถ๋ถ์ด C์์ ์ฌ๋ผ์ง.
- E์์ 3DCRF๋ฅผ ์ ์ฉํ F์์ accuracy๊ฐ ์ฆ๊ฐํจ.(both liver & lesion)
2. Li, Xiaomeng, et al. "H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes." IEEE transactions on medical imaging 37.12 (2018): 2663-2674.
Problem : 2D FCN์ 3D์ ๊ณต๊ฐ์ ์ธ ์ ๋ณด๋ฅผ ์ ๋ถ ๋ด์๋ผ ์ ์๊ณ , 3D FCN์ high computational cost.
Solution : Hybrid Densely connected UNet (H-DenseUNet), which consists of a 2-D DenseUNet for efficiently extracting intra-slice features and a 3-D counterpart for hierarchically aggregating volumetric context under the spirit of the auto-context algorithm for liver and tumor segmentation.
Dataset : MICCAI 2017 Liver Tumor Segmentation Challenge(LiTS) and 3DIRCADb dataset
- LiTS : 131 and 70 contrast-enhanced 3D abdominal CT scans
Preprocessing :
1) HU to [-200, 250] to remove the irrelevant details
2) For coarse liver segmentation, resample images with the same resolution 0.69 * 0.69 * 1.0 mm3
3) For lesion segmentation, use image with original resolution
Model Architecture : employed cascaded learning strategy
1) simple ResNet architecture to get a quick but coarse segmentation of liver as ROI
2) Using ROI from 1), H-DenseUNet probes intra-slice and inter-slice features through a 2D DenseUNet and 3D counterpart.
3) Hybrid Feature Fusion (HFF) layer for accurate segmentation
Performance :
3. https://www.kakaobrain.com/blog/48 (2018)
- MICCAI๊ฐ ์ฃผ๊ดํ 3D ์๋ฃ์์ ๋ถํ ์๊ณ ๋ฆฌ์ฆ ๊ฐ๋ฐ ๋ํ์ธ ‘medical decathlon’์์ 2๋ฑ ์์
Goal : ์๋ก ๋ค๋ฅธ 10์ข ์ ์๋ฃ์์์ ๋ํด ์ผ์ ์์ค ์ด์์ ์ ํ๋์ ์๋๋ก ์ด๋ฏธ์ง๋ฅผ segmentationํ๋ ๋ฒ์ฉ ๋ชจ๋ธ
* ์๋ฃ์์์์์ ๋ฒ์ฉ ๋ชจ๋ธ์ ํ์์ฑ
1) ์ ์ฒด ๋ฐ์ดํฐ์ ๊ฐ์์ ๋ถ์กฑ
2) ํด๋์ค ๋ถ๊ท ํ
3) ๋ค์ค ๋ ์ด๋ธ์ ์กด์ฌ
4) Multimodality image ํ์ต์ ์ด๋ ค์
Model : 2๋จ๊ณ 3D UNet
- ์ฒซ ๋ฒ์งธ UNet์ ์ ์ฒด ์ด๋ฏธ์ง ์ค ์ค์ํ ๋ถ๋ถ์ cropํจ.
- ๋ ๋ฒ์งธ UNet์ ์ฒซ ๋ฒ์งธ UNet์ด cropํ ๋ถ๋ถ์ input์ผ๋ก ๋ฐ์ segmentationํจ.