๐ŸŒŒ Deep Learning/Overview

[StyleGAN ์‹œ๋ฆฌ์ฆˆ] ProGAN/PGGAN, StyleGAN, StyleGAN2

๋ณต๋งŒ 2022. 8. 19. 20:58

ProGAN๋ถ€ํ„ฐ StyleGAN2๊นŒ์ง€, style transfer์—์„œ ๊ฐ€์žฅ ์œ ๋ช…ํ•œ ๋ชจ๋ธ์ธ StyleGAN์˜ ๋ณ€์ฒœ์‚ฌ์™€ ๊ฐ ๋ชจ๋ธ์˜ ํŠน์ง•์„ ๊ฐ„๋‹จํžˆ ์ •๋ฆฌํ•ด ๋ณด๊ณ ์ž ํ•œ๋‹ค.

 

 

1. ProGAN/PGGAN (ICLR 2018)

Paper: Progressive Growing of GANs for Improved Quality, Stability, and Variation (link)

 

GAN์„ ์ด์šฉํ•ด ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ์€ ์‰ฝ์ง€ ์•Š๋‹ค. ๋”ฐ๋ผ์„œ latent vector์—์„œ ํ•œ๋ฒˆ์— ๊ณ ํ•ด์ƒ๋„์˜ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๊ธฐ๋ณด๋‹ค๋Š”, ๋‚ฎ์€ ํ•ด์ƒ๋„์˜ ์ด๋ฏธ์ง€(4x4)๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๊ฒƒ๋ถ€ํ„ฐ ํ•™์Šตํ•ด์„œ ์ ์ง„์ ์œผ๋กœ(progressive) ๋ ˆ์ด์–ด๋ฅผ ์ถ”๊ฐ€ํ•˜๋ฉฐ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€(1024x1024)๋ฅผ ๋งŒ๋“œ๋Š” ๋ฐฉ๋ฒ•์„ ํ•™์Šตํ•œ๋‹ค.

 

 

๋ ˆ์ด์–ด๋ฅผ ์ถ”๊ฐ€ํ•  ๋•Œ๋Š” fade in ๋ฐฉ์‹์œผ๋กœ ๋ถ€๋“œ๋Ÿฝ๊ฒŒ ๋ผ์›Œ ๋„ฃ๋Š”๋‹ค. ์•„๋ž˜ ๊ทธ๋ฆผ์˜ (a) -> (b) -> (c) ์ˆœ์„œ๋กœ ๋ ˆ์ด์–ด ์ถ”๊ฐ€๊ฐ€ ์ง„ํ–‰๋œ๋‹ค.

 

(b) ๊ทธ๋ฆผ์ด ๋ ˆ์ด์–ด ์ถ”๊ฐ€ ๊ณผ์ •์„ ๋ณด์—ฌ์ค€๋‹ค. ์ด์ „ ๋ ˆ์ด์–ด์˜ output๊ณผ, ์ƒˆ๋กœ์šด ๋ ˆ์ด์–ด์˜ output์„ ์ ์ ˆํ•˜๊ฒŒ ๋”ํ•ด์„œ ์ตœ์ข… output์œผ๋กœ์จ discriminator์— ์ „๋‹ฌํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

  • weight $\alpha$๋Š” 0๋ถ€ํ„ฐ 1๋กœ linearํ•˜๊ฒŒ ์ฆ๊ฐ€ํ•œ๋‹ค.
  • toRGB operation์€ feature์„ RGB(num_channel=3)๋กœ ๋งŒ๋“œ๋Š” 1x1 conv์ด๋‹ค.
  • ์ด๋Ÿฌํ•œ ๊ตฌ์กฐ๋Š” StyleGAN2 ๋ถ€ํ„ฐ๋Š” ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š”๋‹ค.

 

 

2. StyleGAN (CVPR 2019)

Paper: A Style-Based Generator Architecture for Generative Adversarial Networks (link)

 

์ฐธ๊ณ ํ•œ ๊ธ€

 

 

ProGAN์˜ ๋ฌธ์ œ์ 

ProGAN์˜ ๊ฒฝ์šฐ latent vector๊ฐ€ generator์— ๋ฐ”๋กœ ์ž…๋ ฅ์œผ๋กœ ๋“ค์–ด๊ฐ„๋‹ค. ์ด ๊ฒฝ์šฐ GAN์€ latent space๋ฅผ ํ•™์Šต ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ์— ๋งž์ถฐ ํ•™์Šตํ•˜๊ฒŒ ๋˜๊ณ , entangleํ•œ latent space๋ฅผ ๊ฐ–๊ฒŒ ๋œ๋‹ค.

 

https://blog.promedius.ai/stylegan_1/

 

ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์˜ ๋ถ„ํฌ๊ฐ€ ์ „์ฒด ๋ฐ์ดํ„ฐ์˜ ๋ถ„ํฌ๋ฅผ ๋‹ค ๋‹ด์ง€ ๋ชปํ•˜๊ณ  ๋น„์–ด์žˆ๋Š” ๊ณต๊ฐ„์ด ์žˆ๋Š” ๊ฒฝ์šฐ, latent space๊ฐ€ ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์˜ ๋ถ„ํฌ์— ๋งž์ถฐ์ง€๋ ค ํ•˜๋‹ค ๋ณด๋‹ˆ curvedํ•œ mapping์„ ํ•™์Šตํ•˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค (warping). Warping์ด ๋ฐœ์ƒํ•˜๊ฒŒ ๋˜๋ฉด ๊ฐ style์ด ๊ธ‰์ง„์ ์œผ๋กœ ๋ณ€ํ™”ํ•˜๊ฒŒ ๋˜์–ด, ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€ ์—ญ์‹œ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๋ณ€ํ•˜๊ฒŒ ๋˜๋Š” ํŠน์„ฑ์ด ์กด์žฌํ•œ๋‹ค.

 

 

Mapping network

Entanglement๋ฅผ ํ”ผํ•˜๊ธฐ ์œ„ํ•ด mapping network๋ฅผ ์ด์šฉํ•œ๋‹ค. ๋ฐ”๋กœ generator์— ์ž…๋ ฅ์œผ๋กœ latent vector z๋ฅผ ๋„ฃ์–ด์ฃผ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹๊ณผ ๋น„์Šทํ•œ ํ™•๋ฅ  ๋ถ„ํฌ๋ฅผ ๊ฐ–๋„๋ก non-linearํ•œ mapping์„ ์šฐ์„ ์ ์œผ๋กœ ํ•œ ๋‹ค์Œ, ์ด mapping๋œ vector๋ฅผ ๋ ˆ์ด์–ด ์ค‘๊ฐ„์ค‘๊ฐ„์— ๋„ฃ์–ด ์คŒ์œผ๋กœ์จ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•˜๋„๋ก ํ•œ๋‹ค. ์ฆ‰, style์„ ์ž…ํ˜€์ฃผ๋Š” ๊ณผ์ •์ด๋‹ค.

 

  • Mapping network๋Š” 8๊ฐœ์˜ fc layer๋ฅผ ํ†ตํ•ด input vector z๋ฅผ intermediate vector w๋กœ mapping์‹œํ‚จ๋‹ค.
  • ์•ž์ชฝ์— ๋“ค์–ด๊ฐ€๋Š” style์€ ๋” ๋งŽ์€ layer์„ ํ†ต๊ณผํ•˜๋ฏ€๋กœ ๋” ๋งŽ์€ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค (coarse style). ๋’ค์ชฝ์— ๋“ค์–ด๊ฐ€๋Š” style์€ ๋ฐ˜๋Œ€ (fine style).
  • Input z์™€ output w๋Š” ๋™์ผํ•œ ํฌ๊ธฐ๋ฅผ ๊ฐ–๋Š”๋‹ค. (512*1)
  • ์ดํ›„ mapping๋œ w๋ฅผ synthesis network์˜ ๊ฐ scale์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ์–ด ํ•™์Šต์‹œํ‚จ๋‹ค.
  • Mapping network์˜ ๋ชฉ์ ์€ w์˜ ๊ฐ element๊ฐ€ ๊ฐ๊ฐ ๋‹ค๋ฅธ visual feature์„ ์กฐ์ ˆํ•˜๋„๋ก encodeํ•˜๋Š” ๊ฒƒ์ด๋‹ค.
  • ์ด๋ ‡๊ฒŒ ํ•˜๋ฉด w์˜ ๋ถ„ํฌ์ธ W๋Š” ํ•™์Šต ๋ฐ์ดํ„ฐ์…‹์˜ ๋ถ„ํฌ์™€ ๋น„์Šทํ•œ ๋ชจ์–‘์œผ๋กœ mapping๋˜๊ธฐ ๋•Œ๋ฌธ์— latent space๊ฐ€ disentangleํ•˜๊ฒŒ ๋œ๋‹ค.

 

 

AdaIN

w๋ฅผ ๊ฐ scale์— ์ž…๋ ฅ์œผ๋กœ ๋„ฃ๋Š” ๋ฐฉ๋ฒ•์€ AdaIN์„ ์ด์šฉํ•œ๋‹ค.

 

$AdaIN(x_i, y)=y_{s,i}\frac{x_i-\mu(x_i)}{\sigma(x_i)}+y_{b,i}$

 

w๋Š” learned affine transformation A (fc layer)์„ ๊ฑฐ์ณ input channel๊ณผ ๋™์ผํ•œ ํฌ๊ธฐ์˜ vector $y_{s,i}$, $y_{b,i}$ ๋‘ ๊ฐ€์ง€๋กœ ๋ณ€ํ™˜๋œ๋‹ค. 

 

https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431

 

AdaIN์—์„œ ์ •๊ทœํ™”๋ฅผ ํ•  ๋•Œ๋งˆ๋‹ค ํ•œ ๋ฒˆ์— ํ•˜๋‚˜์”ฉ๋งŒ w๊ฐ€ ๊ธฐ์—ฌํ•˜๋ฏ€๋กœ ํ•˜๋‚˜์˜ style์ด ๊ฐ๊ฐ์˜ scale์—์„œ๋งŒ ์˜ํ–ฅ์„ ๋ฏธ์น  ์ˆ˜ ์žˆ๋„๋ก ๋ถ„๋ฆฌ๋ฅผ ํ•ด์ฃผ๋Š” ํšจ๊ณผ๋ฅผ ๊ฐ–๋Š”๋‹ค. ๋”ฐ๋ผ์„œ style์„ ๋ถ„๋ฆฌํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ AdaIN์ด ํšจ๊ณผ์ ์œผ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.

 

๋˜ํ•œ, generator์˜ ๋งค layer๋งˆ๋‹ค AdaIN์„ ํ†ตํ•ด ์ƒˆ๋กœ์šด style์„ ์ž…ํžˆ๊ฒŒ ๋˜๋ฏ€๋กœ, ํŠน์ • layer์—์„œ ์ž…ํ˜€์ง„ style์€ ๋ฐ”๋กœ ๋‹ค์Œ conv layer์—๋งŒ ์˜ํ–ฅ์„ ๋ผ์นœ๋‹ค. ๋”ฐ๋ผ์„œ ๊ฐ layer์˜ style์ด ํŠน์ •ํ•œ ์‹œ๊ฐ์  ํŠน์„ฑ๋งŒ ๋‹ด๋‹นํ•˜๋Š” ๊ฒƒ์ด ์šฉ์ดํ•ด์ง„๋‹ค.

 

 

Initial input

Generator์— input์œผ๋กœ latent vector๋ฅผ ๋ฐ”๋กœ ๋„ฃ์–ด์ฃผ๋Š” ๊ฒƒ์ด ์•„๋‹ˆ๋ผ, layer ์ค‘๊ฐ„์ค‘๊ฐ„์— mapping network๋ฅผ ํ†ต๊ณผํ•œ latent vector ๊ฐ’์„ ๋„ฃ์–ด์ฃผ๋Š” ๋ฐฉ์‹์„ ์ด์šฉํ•˜๊ธฐ ๋•Œ๋ฌธ์—, ๋Œ€์‹  generator์˜ input์œผ๋กœ๋Š” constant ๊ฐ’์„ ๋„ฃ์–ด์ค€๋‹ค. 

 

ProGAN์—์„œ๋Š” 4*4 ํฌ๊ธฐ์˜ random input์„ generator์— ์ž…๋ ฅ์œผ๋กœ ์ฃผ์—ˆ์ง€๋งŒ, StyleGAN์˜ ๊ฒฝ์šฐ image feature์ด w์™€ AdaIN์— ์˜ํ•ด ์ œ์–ด๋˜๋ฏ€๋กœ, constant ๊ฐ’์œผ๋กœ ๋Œ€์ฒดํ•  ์ˆ˜ ์žˆ๋‹ค.

 

 

Stochastic variation

๊ฐ ์ด๋ฏธ์ง€์˜ ์ž‘์€ ๋””ํ…Œ์ผ์— ํ•ด๋‹นํ•˜๋Š” stochasticity๋ฅผ ๋”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ, input vector์— random noise๋ฅผ ์ถ”๊ฐ€ํ•œ๋‹ค. ์ด๋Š” AdaIN ์ง์ „์— ๋”ํ•ด์ง„๋‹ค.

 

https://towardsdatascience.com/explained-a-style-based-generator-architecture-for-gans-generating-and-tuning-realistic-6cb2be0f431
\Figure 4(c). 100์žฅ์˜ ์‚ฌ์ง„์„ ๊ทธ๋Œ€๋กœ ๋‘๊ณ  ๋…ธ์ด์ฆˆ ๊ฐ’์„ ๋‹ค๋ฅด๊ฒŒ ํ–ˆ์„ ๋•Œ ํ‘œ์ค€ํŽธ์ฐจ์˜ ๋ชจ์Šต / Figure 5. (a): noise๋ฅผ ๋ชจ๋“  layer์— ์คŒ. (b) noise๋ฅผ ์•ˆ์คŒ. (c) noise๋ฅผ fine layer์—๋งŒ ์คŒ (d) noise๋ฅผ coarse layer์—๋งŒ ์คŒ

 

fine layer์˜ noise๋Š” ๋” ์ž์ž˜์ž์ž˜ํ•œ ๋””ํ…Œ์ผ์„, coarse layer์˜ noise๋Š” ๋” ํผ์งํ•œ ๋””ํ…Œ์ผ์„ ์ฑ…์ž„์ง€๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜ ์žˆ๋‹ค.

 

 

Style mixing

๋‘๊ฐœ์˜ latent vector์„ ๋ฝ‘์•„์„œ, crossover point๋ฅผ ๊ธฐ์ค€์œผ๋กœ ์•ž์ชฝ/๋’ค์ชฝ์— ๋‹ค๋ฅธ latent vector์„ ์ด์šฉํ•ด style transfer์„ ํ•œ๋‹ค. ์ด๋ฅผ ํ†ตํ•ด ์ธ์ ‘ํ•œ layer์˜ style์ด ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ๊ฐ–์ง€ ์•Š๋„๋ก ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฆ‰, correlation์„ ์ค„์ด๊ณ  ๋”์šฑ ์ง€์—ญํ™”ํ•˜๋Š” ๊ฒƒ์ด๋‹ค.

 

์ด๋ฅผ ์ด์šฉํ•˜๋ฉด style mxing์ด ๊ฐ€๋Šฅํ•œ๋ฐ, ์˜ˆ๋ฅผ ๋“ค์–ด A vector๋ฅผ low resolution์— ์‚ฌ์šฉํ•˜๊ณ , B vector์„ high resolution์— ์‚ฌ์šฉํ•˜๋ฉด, A vector์— ์ƒ์‘ํ•˜๋Š” ์ด๋ฏธ์ง€์˜ ํŠน์„ฑ์ด coarse style์— ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋˜๊ณ , B vector์— ์ƒ์‘ํ•˜๋Š” ์ด๋ฏธ์ง€์˜ ํŠน์„ฑ์ด fine style์— ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋˜๋Š” ๊ฒƒ์ด๋‹ค.

 

https://www.youtube.com/watch?v=TWzEbMrH59o

 

 

3. StyleGAN2 (CVPR 2020)

paper: Analyzing and Improving the Image Quality of StyleGAN (link)

PyTorch ์ฝ”๋“œ with ์„ค๋ช…: https://bo-10000.tistory.com/169

 

[PyTorch Implementation] StyleGAN2

StyleGAN ์‹œ๋ฆฌ์ฆˆ ์„ค๋ช…: https://bo-10000.tistory.com/158 [StyleGAN ์‹œ๋ฆฌ์ฆˆ] ProGAN/PGGAN, StyleGAN, StyleGAN2 ProGAN๋ถ€ํ„ฐ StyleGAN2๊นŒ์ง€, style transfer์—์„œ ๊ฐ€์žฅ ์œ ๋ช…ํ•œ ๋ชจ๋ธ์ธ StyleGAN์˜ ๋ณ€์ฒœ์‚ฌ์™€ ๊ฐ ๋ชจ๋ธ..

bo-10000.tistory.com

 

์ฐธ๊ณ ํ•œ ๊ธ€

 

๊ธฐ์กด StyleGAN์˜ ๋ฌธ์ œ์  ๋‘๊ฐ€์ง€๋ฅผ ํ•ด๊ฒฐํ–ˆ๋‹ค.

  • blob-like artifact -> normalization ๊ตฌ์กฐ ๊ฐœ์„ 
  • phase artifact -> alternative progressive growing

 

 

Blob-like artifact

StyleGAN์œผ๋กœ ์ƒ์„ฑ๋œ ์ด๋ฏธ์ง€์—์„œ ์–ผ๋ฃฉ(blob) ๊ฐ™์€ artifact๊ฐ€ ๋ฐœ์ƒํ•˜๋Š” ํ˜„์ƒ์ด ์žˆ์—ˆ๋‹ค. ์ด ์–ผ๋ฃฉ์€ 64*64 resolution๋ถ€ํ„ฐ ๋ฐœ์ƒํ•˜๊ธฐ ์‹œ์ž‘ํ•ด์„œ ๊ณ ํ•ด์ƒ๋„๋กœ ๊ฐˆ์ˆ˜๋ก ๋” ์‹ฌํ•ด์ง€๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์—ˆ๊ณ , discriminator์€ ์ด๋ฅผ ๊ฐ์ง€ํ•˜์ง€ ๋ชปํ–ˆ๋‹ค. 

 

์ €์ž๋“ค์€ ์ด ํ˜„์ƒ์˜ ์›์ธ์„ AdaIN์œผ๋กœ ๋ณด์•˜๋‹ค. AdaIN์€ ๊ฐ๊ฐ์˜ feature map์„ ๋…๋ฆฝ์ ์œผ๋กœ normalizeํ•˜๋Š”๋ฐ, ์ด ๊ณผ์ •์—์„œ ์„œ๋กœ ์—ฐ๊ด€๋˜์–ด ์žˆ๋Š” feature map๋“ค์˜ ๊ด€๊ณ„๊ฐ€ ๋ฌด์‹œ๋˜๋Š” ๊ฒƒ์ด ์œ„์™€ ๊ฐ™์€ ๋ฌธ์ œ๋ฅผ ๋ฐœ์ƒ์‹œํ‚จ๋‹ค๊ณ  ํ•ด์„ํ–ˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ด๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋Š” ์ƒˆ๋กœ์šด instance normalization ๋ฐฉ๋ฒ•์„ ์ œ์‹œํ•œ๋‹ค.

 

 

(a)์€ StyleGAN์˜ generator ๊ตฌ์กฐ๋ฅผ ๊ทธ๋Œ€๋กœ ๊ฐ€์ ธ์˜จ ๊ฒƒ์ด๊ณ , (b)๋Š” StyleGAN์˜ generator ๊ตฌ์กฐ์—์„œ AdaIN ๋ถ€๋ถ„์„ ๋ณด๋‹ค ์ž์„ธํ•˜๊ฒŒ ๋‚˜ํƒ€๋‚ธ ๊ฒƒ์ด๋‹ค. AdaIN์€ feature์˜ mean๊ณผ std๋ฅผ ์ด์šฉํ•ด normalizationํ•˜๋Š” ๋ถ€๋ถ„๊ณผ, style vector์„ ์ด์šฉํ•ด ๋‹ค์‹œ feature์˜ mean๊ณผ std๋ฅผ modulation ํ•˜๋Š” ๋ถ€๋ถ„์œผ๋กœ ๋‚˜๋ˆ  ์ƒ๊ฐํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ ํ•˜๋‚˜์˜ style์ด ๊ด€์—ฌํ•˜๋Š” ๋ถ€๋ถ„์„ ํ•˜๋‚˜์˜ "style block"์œผ๋กœ ๋ณธ๋‹ค๋ฉด, modulation์ด ์ ์šฉ๋œ ์ดํ›„๋ถ€ํ„ฐ ๋‹ค์Œ modulation์ด ์ ์šฉ๋˜๊ธฐ ์ „๊นŒ์ง€์˜ ์—ฐ์‚ฐ๋“ค์ด ๋ชจ๋‘ ํฌํ•จ๋œ๋‹ค. (modulation->conv->add noise->normalization)

 

StyleGAN2์€ ์—ฌ๊ธฐ์„œ ๋‘ ๊ฐ€์ง€ ํฐ ์ˆ˜์ •์„ ๊ฐ€ํ•œ๋‹ค. ์šฐ์„  (c)๋Š” ๋„คํŠธ์›Œํฌ ๊ตฌ์กฐ๋ฅผ ์ˆ˜์ •ํ•œ๋‹ค. ์šฐ์„  add noise ๋ถ€๋ถ„์„ style block ๋ฐ–์œผ๋กœ ๋นผ๊ณ  style block๊ณผ style block ์‚ฌ์ด์—์„œ ์ˆ˜ํ–‰ํ•œ๋‹ค. ๋˜ํ•œ, normalization๊ณผ modulation ์—ฐ์‚ฐ์„ std์—์„œ๋งŒ ์ ์šฉํ•˜๊ธฐ๋กœ ํ•œ๋‹ค. ์ฆ‰, mean๊ฐ’์€ ์ˆ˜์ •ํ•˜์ง€ ์•Š๋Š” ๊ฒƒ์ด๋‹ค.

 

(d)๋Š” style์„ ์ž…ํžˆ๋Š” ๊ณผ์ •์„ ์ˆ˜์ •ํ•˜๊ฒŒ ๋œ๋‹ค. (c)์˜ style block์„ ๋ณด๋ฉด, ์šฐ์„  feature map์˜ std modulation์„ ์ˆ˜ํ–‰ํ•œ ์ดํ›„ convolution์„ ์ด์–ด์„œ ์ˆ˜ํ–‰ํ•˜๋Š”๋ฐ, ์ด๋Š” ๋‹จ์ˆœํžˆ convolution weight์„ scalingํ•˜๋Š” ๊ฒƒ๊ณผ ๋™์ผํ•˜๋‹ค.

 

$w'_{ijk}=s_i\cdot w_{ijk}$

 

์ด๋•Œ input์ด ํ‘œ์ค€์ •๊ทœ๋ถ„ํฌ๋ฅผ ๋”ฐ๋ฅธ๋‹ค๊ณ  ๊ฐ€์ •ํ•˜๋ฉด output์˜ std๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค.

 

$\sigma_j=\sqrt{\sum_{i,k}{s'_{ijk}}^2}$

 

std normalization์€ output์„ ์ด output std ๊ฐ’์œผ๋กœ ๋‚˜๋ˆ  ์ฃผ๋Š” ๊ฒƒ๊ณผ ๋™์ผํ•˜๊ธฐ ๋•Œ๋ฌธ์— (demodulation), ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ด๋Š” convolution weight์˜ scaling์œผ๋กœ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค.

 

$w''_{ijk}=w'_{ijk}/\sqrt{\sum_{i,k}{w'_{ijk}}^2+\epsilon}$

 

์ฆ‰ ์ „์ฒด style block (modulation -> convolution -> normalization)์€ ํ•˜๋‚˜์˜ convolution layer์˜ weight์„ ์ˆ˜์ •ํ•˜๋Š” ๋ฐฉ์‹์œผ๋กœ ๊ตฌํ˜„ํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒƒ์ด๋‹ค. (modulation -> demodulation -> convolution)

 

 

Phase artifact

Progressive growing์€ ์•ˆ์ •์ ์œผ๋กœ ๊ณ ํ•ด์ƒ๋„ ์ด๋ฏธ์ง€๋ฅผ ํ•ฉ์„ฑํ•˜๋Š” ๋ฐ์— ๋งค์šฐ ์œ ์šฉํ•˜์ง€๋งŒ, ์น˜์•„๋‚˜ ๋ˆˆ ๋“ฑ์ด ํŠน์ • ์œ„์น˜์— ๊ณ ์ •๋˜๋Š” phase artifact (strong location preference) ํ˜„์ƒ์ด ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Š”, ๊ฐ resolution์ด output resolution์— ๋Œ€ํ•ด ์ตœ๋Œ€ frequency detail์„ ์ƒ์„ฑํ•˜๊ณ ์ž ํ–ˆ๊ธฐ ๋•Œ๋ฌธ์ด๋‹ค. ์ด์— ๋Œ€ํ•œ ๋Œ€์•ˆ์œผ๋กœ ์„ธ ๊ฐœ์˜ ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ–ˆ๋‹ค.

 

  • (a) MSG-GAN: ๋™์ผ res์˜ G์™€ D๋ฅผ skip connection์œผ๋กœ matching์‹œ์ผœ์ค€๋‹ค.
  • (b) skip connection: G์˜ output์„ ๋‹ค ๋”ํ•ด์„œ decoder๋กœ ์ „๋‹ฌํ•œ๋‹ค.
  • (c) residual connection

 

Generator๊ณผ discriminator์— ๋Œ€ํ•ด ๊ฐ๊ฐ ์„ธ ๊ฐ€์ง€ ๊ตฌ์กฐ๋ฅผ ์ ์šฉํ•ด ์ด 9๊ฐ€์ง€๋ฅผ ์‹คํ—˜ํ•ด๋ณด๊ณ , ๊ทธ ์ค‘ ๊ฐ€์žฅ ์„ฑ๋Šฅ์ด ๋†’์€ ์กฐํ•ฉ์„ ์ฑ„ํƒํ–ˆ๋‹ค (Generator-(b), discriminator - (c))

 

 

4. StyleGAN3 (NeurIPS 2021)

paper: Alias-Free Generative Adversarial Networks (link)

๋ฐ˜์‘ํ˜•